

The UW Integrated AEC Studio: Pedagogy, course structure, and insights from 2009 - 2016

Ann Marie Borys (Architecture)
Kate Simonen (Architecture)
Carrie Sturts Dossick (Construction Management)
Chris Monson (BE Ph.D.)

High performance buildings require collaboration

Integrated AEC Studio

Education Processes, Infrastructure, Curricula

How can AEC students be engaged across studio/non-studio disciplines with different credit hours and curriculum requirements?

UW Integrated AEC Studios

- Begun Winter Quarter 2009
- Teams of 3-10:
 - Architecture, CM, Civil, Structural, Landscape Arch., Real Estate, Sustainability, Facilitation
- Experiments with different projects, studio spaces, course schedules
- since 2014: 6 cr Arch studio +
 3 cr seminars structure
- 10 week quarters

2009: Net Zero Office

2013: Modular Multi-Family

UW Integrated AEC Studios

- Arch Seniors—5th of 6 required arch studios
- Required for Arch/CM dual majors 4th year
- Four seminars—AEC content
- CM Seniors/5th year dual right before their capstone
- Others take 3 cr. Seminars
 - Usually fulfills elective credits

Integrated AEC Studio

Course Design: Studios and Seminars

- Traditional arch studio
 - 1 faculty member
- 4 seminars
 - 2 faculty members
 - Teach seminars alternate days
- Seminar students have not had prior studio experience
 - Issues: research, proposition, multi-variate problem solving
 - Pin-up discussions ("out"), research for future ("in")
 - Architecture student "process mentors" for studio habits

Integrated AEC Studio

Course Design: Studios and Seminars

- Meet MWF, studio/seminars overlap, Friday team day
- Architecture student "lead" attends seminars

Integrated AEC Studio

Course Design: "Cycles"

 Content "Cycle"—A) introduction [and review], B) design and integrate, team workshop, C) develop/prepare for review

- Reviews include industry experts and outside faculty
- Review responses are team reflections on information learned at reviews
- Facilitation includes team planning, peer assessment

Course Design: "Cycles"

 Content Cycle 0: Intro & analysis, Cycle 1: structural system, Cycle 2: façade/envelope, Cycle 3: "deep dive" system development

Integrated AEC Studio

Course Design: "Cycles"

- "set-based design"—developed from "set-based concurrent engineering" Sets of possible solutions considered concurrently, narrow possibilities, converge on final interim solution. New questions posed. (Toyota; Smith, 1997).
- Parallel to LEAN process, fast-track design/construct, IPD

Integrated AEC Studio

2016 Studio—Timber Frame Office Building

Stone 34 project:

Just-built developer office building in Freemont

Performance meeting Seattle
Deep Green Pilot program

Studio challenge: reconsider design with timber frame structure

Metrics: cost, square footage, sustainability, constructability

Integrated AEC team design process

2016 Studio—Timber Frame Office Building

Work environment:

Studio space +
Two adjacent seminar rooms

Work ethic:

Team buy-in on project goals
Team-driven work periods

Studio instruction:

Full design team crits usual for M & W
Review project progress and discuss options
Fluid full-team work time most F sessions
All instructors stopping in as able to assist

2016 Studio—Cycle 0: Analysis

Week 1 of 10:

Each discipline
analyzed documents
and gathered information
on the Stone 34 project

In a Friday workshop, students pinned up work and shared findings across disciplines

Teams looked for connections between issues identified

ZONE: NC3-63 Neighborhood/Overlay: Fremont Hub Urban Village Height Restriction: 45' + 20' additional to meet LBPP Rooftop Features: 16' allowance (if occupy > 20% of roof)

Integrated AEC Studio

2016 Studio—Cycle 1: Structural System

Weeks 2, 3, and 4 of 10:

Teams started with 2-3 massing schemes for preliminary framing analysis

Review at end of cycle 1 was

meant to help students use the structural issues to select the best scheme

Decision not uniformly logical

Integrated AEC Studio

2016 Studio—Cycle 2: Façade and Envelope

Weeks 4, 5, and 6 of 10:

Design exploration was assisted by information gathering for materials and assemblies

Sustainability factors & strategies were evaluated

Integrated AEC Studio

2016 Studio—Cycle 2: Façade and Envelope

Estimation

Stone 34 Envelope

o Cost/SF:

o Total SF: 54,124 SF o Total Cost: \$ 3,277,696 o Cost/SF: \$ 60.56

o Cost/SF: \$ 60

New Design Envelope

o Total SF: 49,050 SI o Total Cost: \$ 3,129,708

49,050 SF 3,129,708 63.81

HORIZONTAL SHADING OPTIONS

Model	Heating	Cooling (ABTU/(12/jr)	Fans (keturtz/yi)	Lighting	Total (kBTU/ft2/pt)
159.	3.97	8.87	12.14	10.7	35.68
175.	4.73	6.98	10.41	10.7	32.82
165.	4.94	6.67	10.16	10.7	32.47
				10.7	32.47
	4.94			12 (74,0) and	Feeting Capitry Fens Uniting

- Horizontal 2' deep shades provide energy benefits to South-facing wall
- Shading below top of glazing produces maximum efficiency

Final design options were analyzed for energy, daylighting, and cost

2016 Studio—Cycle 3: System Development

Weeks 8 & 9:

Partnerships
within teams to
explore in-depth
some aspect or
feature in the
conceptual design

Each "deep dive" feature should ideally be understood from multiple perspectives

Integrated AEC Studio

2016 Studio—Cycle 3: System Development

STRUCTURAL - DEEP DIVE CONNECTIONS Beam to Girder Girder to Column Beam to Girder Column to Column Sloped Column to Sloped Column Steel Beam to Wood Columns Steel Beam to Wood Columns Steel Beam to Column Steel Beam to Column Column Steel Beam to Column Steel Beam to Columns Steel Beam to Columns

2016 Studio—Final Review

Integrated AEC Studio

Team A

Team Members

ARCHITECTS

SHANNEN MELANIE GEORGE RILEY

LOGISTICS

SIDDHARTH CHRISTINA NHI

STRUCTURAL ENGINEERS

JEAN-LUC MIRA

COST ESTIMATORS

ANTOINE

SUSTAINABILITY ADVISORS

PEYTON

Integrated AEC Studio

W

Integrated AEC Studio

Energy & Performance Analysis

Comparing with scenario 1, scenario 2 consumes less energy for cooling and heating as the total conditioned space is reduced.

Comparing with scenario 2, some of the core office zones are turned to be perimeter zones after the stair became an open air space in the scenario 3. So in the scenario 3 the building consumes less energy for cooling, but more energy for heating. When comparing the total energy consumption, scenario 2 consumes the lowest.

Peak temperatures & total loads of office along inside the staircase

When the staircase is open, the maximum temperatures during summer are reduced by 7.0% in the West, by 7.6% in the South, and by 7.2% in the East compared to the scenario 2. This reduction is probably attributed to the effectiveness of natural ventilation as those three areas are turned into perimeter zones. Natural Ventilation helps a lot in moving away the cooling loads from the office space. While, during winter, the minimum temperatures are not decreased too much. And this can be explained with the high internal heat gain in the office space offsets part of the heating load.

Considering both the energy consumption and the comfort condition, scenario 3 is the best design scenario.

Integrated AEC Studio

Framing, Columns, and Connections

Structural Connections Cost Analysis

Description	Quantity	Cost	Total
Cycle 2 Structure			
Special Fabricated Fasteners	60	\$ 500.00	\$ 30,000.00
Girder Fasteners	200	\$ 385.00	\$ 77,000.00
One Level Cost			\$ 107,000.00
Total Cost			\$ 535,000.00
PT Beam Structure			
Special Fabricated Fasteners	54	\$ 500.00	\$ 27,000.00
One Level Cost			\$ 27,000.00
Total Cost			\$ 135,000.00

Post Tension Beam Cost Analysis

Description	Quantity	Length	Cost	Total	
Beams			1		
8.75" x 21" x 30'	93	30	\$ 35.78	\$ 99,826.20	
8.75" x 21" x 15'	210	15	\$ 35.78	\$ 112,707.00	
12.25"x24"	189	30	\$ 45.00	\$ 255,150.00	
PT Beams					
(2) 2.5" x 12"	224	30	\$ 8.84	\$ 59,404.80	
10.75" x 12"	112	30	\$ 29.82	\$ 100,195.20	
PT Cable	70	110.25	\$ 2.50	\$ 19,293.75	
Columns					
18"x18"	252	10	\$ 74.75	\$ 188,370.00	
CLT Slab		1			
5-Ply	5	28800	\$ 15.00	\$2,160,000.00	
Concrete Topper					
2" Topper	5	178.13	\$675.00	\$ 601,200.00	
Total Building Cost				\$ 3,596,146.95	

Insights: Cooperation vs Collaboration

Team B Cooperative 4D Model

Team A Collaborative 4D Model

Insights: Spaces Reinforce Norms

- Teams differed significantly
- Collaboration norms established early
- Co-ownership in design
- Strong relationship between space usage and interaction

"It is not only a matter of appropriate hardware and software, but also one of appropriate digital studio layout to facilitate collaborative team work."

- Bob Holland

Examples: Communicating Analysis

Final Review Cost Analysis

SUPERSTRUCTURE	Total \$	Total \$			1
1-Bedroom	\$ 5,6	35,649	\$	151	1
Studio	\$ 3,4	42,912	\$	143	1
Penthouse	\$ 3	30,441	\$	105	1
Amenity	\$ 3	13,584]
Roofing	\$ 7	52,987			J
Conveying	\$ 3	97,575			J
Exterior Finishes	\$ 6	19,355			1
Landscaping	\$ 4	32,740			1
Logistics	\$ 9	12,400			l
Subtotal	\$ 12,8	37,643			Į
SUBSTRUCTURE					ł
Podium	\$ 4,5	42,838	\$	210	1
Subtotal	\$ 4,5	42,838			ļ
Total	\$ 17,3	80,481			ļ
Overhead	\$ 2,3	50,680			
Approx Total	\$ 19,7	31,161	1 -		ĺ

Total Units Total Modules 216 64572 Residential Area Commercial Area 6100 Amenity Area 1771 Total Assignable 66704 107389 Usable Area Assignable:Usable 62% Modular Budget 9,722,586 Substructure Budget 4,542,838 Total Budget 14,265,424 Transportation Cost 556,000 Total \$/ Usable SF 151 Modular Budget:Total Bu 68% Total Annual Rent 2,416,982 Years to Return

Figure 1. Total Cost Breakdown with Total Budget Bar Chart

Figure 2. Final Low Rise Data Table

Figure 3. 1-Bedroom Cost Breakdown Table with Pie Chart

Superstructure

Figure 4 Total Cost Comparison Table with Line Graph

Eigura 5 Cuparetructura and Cubetructura

larrative:

Final Review Cost Analysis has taken all of the research done thus far and modified costs to match all assumptions, and redesigns. Assumptions include: 10% reduction for all factory/modular offsite work (Figure 5), deduction of Walkable Skylight, corrections to structural costs to match agreed upon materials, corrections to exterior enclosure to match agreed upon materials (Figure 3), and corrections to Transportation to account for shape of modules and transportation of of two modules for 1-Bedroom, Penthouses, and two Amenity Spaces (Figure 2). The changes mentioned above not only made our estimates more accurate, but reduced our costs significantly from \$23.7 million to a total of \$19.7 million with inclusion of Overhead (Figure 1).

Figure 2 also depicts that our total Assignable and Usable Areas have decreased due to more accurate design take-offs. Even though these areas have been lost we have gained costs in Landscaping costs (Figure 1) which include Green Roofs, Bio-Swales, Trees, and interior Atrium Green Mounts. What we have sacrificed in cost and usable and assignable area we have made up in designing a friendlier community space which exihibits a sense of welcome inside and out.

We have also gone back and took a look at our past cost estimates and came to find out that we have been on quite the adventure. As Figure 4 shows, we have abandoned the High Rise - SR 125 option and continued on with the Low Rise - SR 85. The biggest change in cost occured between Cycle 2 and Cycle 3 when our modular structural system, exterior enclosure system, and transportation took on high \$/SF and miscalculations. Through this Cycle we have learned that there is always room for data, design, and assumptions to change and improve. At this stage in our studio project development we have achieved a reasonable cost for modular Low Rise construction, at \$151/SF of total cost, with an amazingly low return rate of 8 years (Figure 2). The data presented here represents our best and final numbers for the project at hand, as well as our understanding of the entire project itself. This project has given us an interesting perspective of all components and key players that are involved in the Design-Build process. The amount we have learned as a team is exponential, and will be extremely useful in all of the different fields that we will be pursuing individually.

Examples: Communicating Details

Integrated AEC Studio

Examples: Communicating Constructability

STEP FIVE: MODULES LEVEL ONE

Presenting to Industry and Instructors

The UW Integrated AEC Studio: Pedagogy, course structure, and insights from 2009 - 2016

Ann Marie Borys (Architecture)
Kate Simonen (Architecture)
Carrie Sturts Dossick (Construction Management)
Chris Monson (BE Ph.D.)

Complexity Interdisciplinary Learning

More than one discipline Methodology Language

(Schaffer et al. 2008; Orr, 2006)

Interdisciplinary studio (lab) design courses

(McCuen & Fithian 2010; Dossick & Pena 2010; Holland et al. 2010; Dib & Koch 2010; Gardzelewski et al. 2010; Salazar et al. 2010)

Interdisciplinary Work

"design as a social process"

(Bucciarelli 1994)

develop shared mental models collaboratively

A move away from cooperative approaches

- division of work into independent parts (Smith et al. 2005)

Collaborative interdisciplinary learning

- unstructured processes
- negotiate goals,
- define problems,
- develop procedures, and
- produce socially constructed knowledge

(Goldsmith & Johnson 1990, Dorsey et al. 1999)

